Following is C like pseudo code of a function that takes a Queue as an argument, and uses a stack S to do processing.

void fun(Queue *Q) { Stack S; // Say it creates an empty stack S // Run while Q is not empty while (!isEmpty(Q)) { // deQueue an item from Q and push the dequeued item to S push(&S, deQueue(Q)); } // Run while Stack S is not empty while (!isEmpty(&S)) { // Pop an item from S and enqueue the poppped item to Q enQueue(Q, pop(&S)); } }What does the above function do in general?

Which one of the following is an application of Queue Data Structure?

How many stacks are needed to implement a queue. Consider the situation where no other data structure like arrays, linked list is available to you.

How many queues are needed to implement a stack. Consider the situation where no other data structure like arrays, linked list is available to you.

A priority queue can efficiently implemented using which of the following data structures? Assume that the number of insert and peek (operation to see the current highest priority item) and extraction (remove the highest priority item) operations are almost same.

Which of the following is true about linked list implementation of queue?

Suppose a circular queue of capacity (n â 1) elements is implemented with an array of n elements. Assume that the insertion and deletion operation are carried out using REAR and FRONT as array index variables, respectively. Initially, REAR = FRONT = 0. The conditions to detect queue full and queue empty are

A Priority-Queue is implemented as a Max-Heap. Initially, it has 5 elements. The level-order traversal of the heap is given below:
10, 8, 5, 3, 2
Two new elements ”1‘ and ”7‘ are inserted in the heap in that order. The level-order traversal of the heap after the insertion of the elements is:

An implementation of a queue Q, using two stacks S1 and S2, is given below:

void insert(Q, x) { push (S1, x); } void delete(Q){ if(stack-empty(S2)) then if(stack-empty(S1)) then { print(âQ is emptyâ); return; } else while (!(stack-empty(S1))){ x=pop(S1); push(S2,x); } x=pop(S2); }Let n insert and m (<=n) delete operations be performed in an arbitrary order on an empty queue Q. Let x and y be the number of push and pop operations performed respectively in the process. Which one of the following is true for all m and n?

Consider the following operation along with Enqueue and Dequeue operations on
queues, where k is a global parameter.

MultiDequeue(Q){ m = k while (Q is not empty and m > 0) { Dequeue(Q) m = m - 1 } }What is the worst case time complexity of a sequence of n MultiDequeue() operations on an initially empty queue? (GATE CS 2013) (A) (B) (C) (D)